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Simulated-annealing methods have been used to resolve the phase-ambiguity

problem in the centrosymmetric P�1 space group. First, an energy function based

on the Sayre equation is introduced and a formal comparison with classical spin

systems is drawn. The energy landscape is studied in detail and the validity of

several energy criteria thoroughly tested. Classical Monte Carlo methods

proved to be successful using a multistart optimization of the Sayre score, along

with the additional monitoring of other energetic criteria. These involved the

Terwilliger map quality index in reciprocal space in the absence of envelope

information, and an envelope score if the shape of the molecule is known. The

inherent phase-ambiguity problem of the P�1 space group was therefore

technically solved by Monte Carlo methods. The method should also work to

resolve phase ambiguity in the SIR method of protein crystallography.

1. Introduction

In protein crystallography and X-ray structure determination,

most of the phase information is still obtained experimentally,

using trial-and-error heavy-atom soaking of the crystals

followed by localization of the binding sites through Patterson

methods.

To resolve the phase ambiguity of the Harker construct, a

minimum of two independent heavy-atom-substituted crystals

is needed (Blundell & Johnson, 1976). If only one heavy-atom

derivative is available, structure determination is made dif®-

cult by the inherent equivalence of the two phases given by the

Harker construct. The latter case is usually referred to as the

SIR method (single isomorphous replacement).

The classical probabilistic treatment of this problem, as

originally proposed by Blow & Crick (1959), is to use ®gure-

of-merit (FOM) weighted structure factors and centroid

phases to calculate maps and try to distinguish an envelope as

well as protein features such as helices and �-sheets in them.

The centroid phase might seem at ®rst glance an odd choice,

since it can be as far as 90� away from the right phase, but the

®gure of merit will weight down precisely those re¯ections for

which there is a large difference between the centroid phase

and any of the two possible ones.

However, it would be interesting to have a method to pick

up for each re¯ection the right phase among the two possible

ones, using some optimization method to impose physical

characteristics that are known to be satis®ed for real maps of

proteins. Exploring all the possibilities is out of question since

this would involve 2N trials and map evaluations, where N is

the number of re¯ections.

Since there is an analogy between the phase-ambiguity

problem in the SIR method and spin systems in condensed-

matter physics, and since this last problem is one of the most

widely studied problems in numerical simulations of systems

of interacting particles, it might seem a good idea to try

methods that proved successful in this last case and apply

them to the crystallographic problem. Continuing progress in

the ®eld in the past few years due to both increase in

computing power and re®nement of theoretical methodolo-

gies makes this possibility even more attractive (Newman &

Barkema, 1999).

The formal analogy of some problems in phase determi-

nation and the Ising spin system or even the spin-glass

problem (Venkatesan, 1991) is not a new idea. Monte Carlo

methods have been used in the past by several authors to

improve phases (Bhat, 1990; Sheldrick, 1990). The advantage

of working in reciprocal space was also underlined in the

recent work of Beran & SzoÈ ke (1995). The connection with

statistical thermodynamics was made some years ago and used

with success for small-molecule crystallography (Khacha-

turyan et al., 1981; Semenovskaya et al., 1985). In a separate

paper, the analogy with the spin glass problem is drawn

further by using the methods of statistical thermodynamics,

especially mean-®eld theory (Delarue & Orland, 2000). Here,

we present a successful practical implementation of Monte

Carlo methods to solve the phase problem in a speci®c case of

protein crystallography, with focus on the characterization of



the energy landscape. Special attention is devoted to testing

recently developed variants of the simulated-annealing

protocol to resolve phase ambiguity in the P1Å centrosym-

metric space group.

The main dif®culty encountered in this work is the de®ni-

tion of an effective energy function to be minimized.

Following others (Weinzierl et al., 1969; Coulter, 1971;

Hendrickson, 1971; Main, 1990; Giacovazzo et al., 1994;

Mukherjee & Woolfson, 1995), the work described here

originally focused on the application of the Sayre equation

(Sayre, 1952). This is very similar in spirit to the recent work of

Chen & Su (2000), who employed the Sayre equation and

simulated-annealing methods to solve the phase problem for

small-molecule crystals (up to 126 non-H atoms). Here, it is

performed on a small protein, rubredoxin; it soon appeared

necessary to go beyond the Sayre equation and investigate

other energy terms, expressed in reciprocal space, that re¯ect

different physical criteria characterizing real electron-density

maps.

2. Theory and methods

2.1. Choice of the space group

Instead of working with a real SIR case in a speci®c space

group, the centrosymmetric space group P1Å was chosen, where

all structure factors are real, the phases being restricted to

take one of the two values 0 and 180�. The analogy with spin

systems is then even more striking. Furthermore, this system is

far less unnatural than it may seem at ®rst glance; indeed, Berg

and colleagues were able a few years ago to crystallize an

equal mixture of a protein and its enantiomer in space group

P1Å (Berg & Goffeney, 1997); direct methods failed to ®nd the

solution of this crystal structure and molecular replacement

was used to locate the natural enantiomer in the cell

(Zawadzke & Berg, 1993). The protein used by these authors

was rubredoxin, a small protein whose unnatural enantiomer

was chemically synthesized. The same protein was used here

but with calculated structure factors.

2.2. Protein and crystallographic data

The crystallographic coordinates of rubredoxin were taken

from the PDB (code 6RXN). The molecule was placed in a

cubic P1Å cell (a � b � c � 45 AÊ ) and care was taken that the

packing was correct, i.e. that no crystallographically equivalent

molecule would bump into any other molecule in the cell.

The structure factors were calculated from the atomic

coordinates using the CCP4 suite of programs (Collaborative

Computational Project, Number 4, 1994). The Zn2+ metal ion

was omitted to avoid any strong bias in the Patterson map and

also to meet the condition of equal atoms in the unit cell,

which is at the basis of the Sayre equation. For all applications

described in this article, the resolution was limited to 2.5 AÊ .

The reason why this resolution was chosen, even though the

atomicity condition is not expected to hold at this resolution, is

that it is close to the resolution usually available for crystals of

biological macromolecules; also, Zhang & Main (1990) have

shown that the Sayre equation, when used in conjunction with

other density-modi®cation techniques such as histogram

matching and solvent ¯attening, can actually help in phase

re®nement and extension even at low resolution (3 AÊ ).

In some cases, a random error up to 30% was intentionally

added to the calculated structure factors to simulate experi-

mental errors. In this case, the structure-factor amplitudes

F(h) were replaced by F�h��1� eps rand�iseed��, where

rand(iseed) is a random number uniformally distributed

betweenÿ1 and 1 and eps is the amplitude of the noise (10, 20,

30%, . . . ).

2.3. Definition of the energy to minimize

The Sayre equation is the reciprocal-space equivalent of a

simple relationship in real space, �(r) / �2(r), which is valid

for sharply peaked electron-density maps (the so-called

atomicity condition). The Sayre equation reads (Sayre, 1952)

F�h� � g�h�P
k

F�k�F�hÿ k�; �1�

where g(h) is a resolution-dependent form factor.

Let us call FS(h) the right-hand side of this equation,

ignoring the g(h) form factor.

FS�h� �
P

k

F�k�F�hÿ k�; i:e: F�h� � g�h�FS�h�: �2�

The Sayre equation states that these Sayre structure factors

FS(h) should scale well with the original F(h) structure factors.

To alleviate the problem of calculating explicitly the (resolu-

tion-dependent) g(h) scaling factor, which is impossible to

estimate in an analytical way at low resolution, a correlation

coef®cient between F(h) and FS(h) is used. It is true that a

(linear) correlation coef®cient will not tackle well rapidly

varying g(h) functions but this procedure was found good

enough for the purpose of this work. In particular, it was found

that the correlation coef®cient increases in a monotonous way

for decreasing phase errors. The simplest way to derive an

energy from a correlation coef®cient is to de®ne WSayre such

that

WSayre � 1ÿ Corr�F�h�;FS�h��; �3�
where Corr(A, B) stands for the correlation coef®cient

between the two quantities in parentheses (A and B) and has

its usual meaning:

Corr�A;B� � �hABi ÿ hAihBi�
� �hA2i ÿ hAi2�ÿ1=2�hB2i ÿ hBi2�ÿ1=2: �4�

This proved to be superior to a correlation coef®cient calcu-

lated on the structure-factor modulus only:

WSayre � 1ÿ Corr�F�h�;FS�h��: �5�
It turns out that it is not necessary to calculate this correlation

coef®cient over the entire set of re¯ections but that a mere

subset of the 1000 or so most intense ones are suf®cient to

obtain a very accurate Sayre score. To speed up the calculation

of the energy W, the list of re¯ections k (h) contributing to the
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summation in (1) is stored once and for all for each re¯ection

h.

In P1Å , all the structure factors are real, therefore they can

be written

F�h� � F�h�s�h�;
where s(h) is the sign of re¯ection h.

Substituting in (1), one gets

s�h�F�h� � g�h�P
k

F�k�F�hÿ k�s�k�s�hÿ k� �6�

or

s�h� /P
k

J�k; hÿ k�s�k�s�hÿ k�; �7�

where J�k; hÿ k� � F�k�F�hÿ k� can be seen as a coupling

factor between re¯ections k and hÿ k, i.e. the strength of their

interaction. In this form, substituting s(h) by the magnetiza-

tion of a spin located at site h of a lattice, it can be seen that

the sign-ambiguity problem in crystallography bears strong

resemblance to problems of interacting spins in condensed-

matter physics, even though the energy de®ned in (5) is more

intricate than the one encountered in the classical Ising spin

problem for example.

It is also possible to express in reciprocal space the a priori

knowledge of the form of the electron density outside the

protein, which should be constant and equal to zero. One way

to express it is to impose ��r� � ��r���r�, where �(r) is the

characteristic function of the envelope of the molecule. If G(k)

is the Fourier transform of �(r), one can de®ne another energy

function, in reciprocal space:

WEnv � 1ÿ Corr�F�h�;Fenv�h��; �8�
with

Fenv�h� �
P

k

F�k�G�hÿ k�:

Hence, one can try to minimize a combination of the two,

controlled by the mixing parameter �:

Wtot � �WSayre � �1ÿ ��Wenv: �9�
For the sake of completeness, it is in order to note here that

the problem of using information from real-space constraints

to break down the phase ambiguity in the SIR method has

been re-examined recently by Gu et al. (1997) and Zheng et al.

(1997).

Other types of energy were considered, mainly involving

nearest-neighbour-position correlations in real space, but

expressed in reciprocal space (see Bruinsma, 1988), but they

were found to carry no phase constraint, all the information

being contained in Patterson maps.

2.4. Terwilliger electron-density-map criterion, expressed in
reciprocal space

The local roughness of the electron-density map is a good

criterion to distinguish between protein and solvent regions. It

can be used in real space to determine the limits of the

molecule (Rees et al., 1990; Jones et al., 1991) and evaluate

the quality of an experimental MIR map (Terwilliger &

Berendzen, 1999). Its variance over the entire unit cell, �2
R, can

be used to distinguish between good and poor maps; it can be

expressed in reciprocal space via the formula (Terwilliger,

1999)

�2
R �

P
h 6�0

jR�h�j2; �10�

where the original notations were followed:

R�h� � B�h� exp�ÿ2�2�2S�h�2� ÿ B�h�AVG �11�
with

B�h� �P
k

F�k�F�hÿ k� �12�

B�h�AVG �P
k

Q�k�Q�hÿ k�: �13�

In this last equation, Q(h) is de®ned by

Q�h� � F�h� exp�ÿ2�2�2S�h�2�; �14�
where

S�h� is the inverse of the resolution and � � 2:5 AÊ : �15�

2.5. Monte Carlo and simulated-annealing methods

Each time a simulation was run, the initial con®guration of

the system {s(h)} was chosen randomly, i.e. a random number

(either �1 or ÿ1) was drawn for each re¯ection.

Monte Carlo simulations were performed in the usual way:

a re¯ection was picked at random, then the energetic cost �E

of ¯ipping its sign was calculated and the move was accepted if

�E was negative or if it satis®ed the so-called Metropolis

recipe (Metropolis et al., 1953). Unless otherwise stated, the

random generator was ran2 of Numerical Recipes (Press et al.,

1992). In some cases, other random generators were used, with

similar results.

Care was taken to minimize the number of calculations

involved in the evaluation of �E; this allowed for about

3 � 10E+5 sweeps of the spin system (usually 1000 re¯ections

or so) in 12 h of CPU on a DEC Alpha PWS500 workstation.

Simulated annealing was performed (Kirkpatrick et al.,

1983) with an exponential cooling protocol. The energy ¯uc-

tuations were monitored by plotting the speci®c heat, which

reads:

Cv�T� � �hE2i ÿ hEi2�=kBT2: �16�
This quantity is useful because it helps to locate where the

phase transition (if any) takes place (Kirkpatrick et al., 1983).

In our case, `phase transition' means transition from a random

phase set to the closest available phase set minimizing the

energy; there is no guarantee that the minimum is the global

one and not a local one. The reason why the Cv(T) reaches a

maximum is the following: intuitively, one can see that at low

temperature there is no ¯uctuation any more, the system is

frozen and the numerator ensures that Cv reaches zero. At

high temperatures, there are large ¯uctuations but the



denominator ensures that Cv is also tending to zero. In

between, it reaches a maximum at Tc, where it is recom-

mended to decrease the temperature slowly (Newman &

Barkema, 1999).

In terms of CPU, 250 temperature steps could be performed

in 4 h CPU, with 400 sweeps of the 1000 re¯ections system at

each step, a grand total of 10E+8 attempts to change phases. A

typical 2% decrease of the temperature at each step was

applied, spanning roughly two orders of magnitude, from

0.0003 to 0.000003. This range was determined by looking at

the Cv(T) curve in a quick preliminary simulation using a

larger rate of temperature decrease, just to spot the transition

temperature Tc.

To get an idea of the number of cycles to do at each

temperature, a longer simulation was performed to calculate

the auto-correlation function �(t) and estimate its character-

istic decay time � (Newman & Barkema, 1999) at different

temperatures.

��t�=� � R dt0 �m�t0� ÿ hm�t0�i��m�t � t0� ÿ hm�t � t0�i�; �17�
where hm�t�i is the mean sign of the re¯ection, per re¯ection,

at time t of the simulation.

The correlation time � was estimated by ®tting the �(t)

function to the theoretical curve

��t� � ��0� exp�ÿt=��: �18�
In some test cases designed to study the energy landscape and

check out the algorithm, a certain percentage of phases was

imposed to their `native' values. Those re¯ections whose phase

(sign) were imposed and set to their native value for the rest

of the simulation were chosen randomly. The percentage of

imposed re¯ections refers to the fraction of the working set

(usually 1000 re¯ections) being unre®ned and correct.

Unless otherwise stated, three phase re¯ections were always

imposed to remove origin de®nition problems.

2.6. Extension to P1 and other space groups

It is also possible to perform Monte Carlo simulations in

any space group, sampling the phases at 45, 135, 225 and 315�.
In this case, the most ef®cient method is the so-called rejec-

tionless Monte Carlo method, whereby at each step the four

energies E(' = 45�), E(' = 135�), E(' = 225�) and E(' = 315�)
are evaluated for the re¯ection under consideration and their

Boltzmann factors calculated. Their sum is normalized to one

and the resulting normalized weights are used to choose just

one of them according to the outcome of a random generator.

This method is also known as the Gibbs sampling method

(Newman & Barkema, 1999).

3. Results

3.1. Validity of the energy function

First, the validity and consistency of the energy function

have to be established. In order to do so, the energy de®ned in

(5), WSayre, was calculated for different percentages of

imposed phases. As expected, it was found that the energy is

decreasing with an increasing percentage of correct re¯ections

(Fig. 1). Evidently, this is a necessary but not suf®cient

condition if one wants to use powerful minimization tech-

niques. Next, the amount of computing time needed to evalu-

ate the energy was reduced by working with the minimum

number of re¯ections, while still giving a suf®ciently accurate

result. In practice, it is enough to work with the top 1000 most

intense re¯ections (Fig. 2a). Alternative de®nitions of the

energy function were also considered. Working with a corre-

lation coef®cient calculated on the modulus of structure

factors instead of the full (signed) structure factors turned out

to be less discriminative (Fig. 1). The in¯uence of noise on the

data was also investigated (Fig. 2b) and found to be small;

below 20% for the noise amplitude.

As a complement, the same dependency on the percentage

of imposed phases of two other energy criteria was investi-

gated, namely the envelope score (Fig. 1), whose de®nition (8)

in reciprocal space follows the same kind of formalism as the

Sayre score, and the local roughness of the map, the Terwil-

liger score, �2
R, as de®ned recently (Terwilliger, 1999, data not

shown). Both also satisfy the necessary conditions of being a

monotonously decreasing function for more and more correct

phase sets. They are also based on different physical proper-

ties of the electron-density maps and could therefore be used

in combination with each other, in the hope of reducing the

number of false (local) minima in the energy landscape.

However, the calculation of the envelope score necessitates

the knowledge of the envelope characteristic function, while

the Terwilliger criterion does not; the former is therefore a

somewhat less arti®cial and more general score than the latter.

3.2. Simulated-annealing and related protocols

Simulated-annealing protocols were tried at different

percentages of imposed phases as a way to understand the

energy landscape of the system. It was found that relatively

simple protocols were able to ®nd the right solution [i.e. the

right {s(h)} phase ensemble] for percentages of imposed
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Figure 1
In¯uence of the percentage of imposed phases on the Sayre score, as
calculated from equation (3) (modulus and phase) and as calculated from
equation (5) (modulus only); the envelope score de®ned in equation (8) is
also shown for comparison.
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phases as low as 5% (see Fig. 3). The transition was easy to

spot using the Cv(T) curve (Kirkpatrick et al., 1983). However,

no slowing down of the correlation time � as de®ned in (18)

was observed around Tc. Convergence at 10% of imposed

phases in the working set necessitated at least 400 sweeps at

each temperature step and a decrease in temperature of 0.98

at each of the simulated-annealing steps. Using this procedure

at 5% of imposed phases in the working set, convergence was

sometimes (but not always) achieved, depending on the initial

con®guration. At 2% of imposed phases, longer and more

sophisticated cooling protocols had to be used, with only

limited success: for instance, 500 temperature cycles with a

decreasing rate of 0.99 and 1000 sweeps each time, with a

grand total of 5.0 � 10E+8 attempts to switch phases, lead to

convergence only once. Because this procedure is more CPU

time consuming, only a limited number of starting con®gura-

tions could be tried.

The in¯uence of noise on the structure factors was also

investigated, at 10% of imposed phases, with the amplitude of

noise varying from 0 to 20%, in steps of 5%, all simulations

converged to the right solution (data not shown).

A number of different simulated-annealing-related proto-

cols (see Berne & Straub, 1997) were then implemented and

tested, at lower percentages of imposed phases.

Among them, the so-called `threshold accepting' algorithm

was at least as successful as simulated annealing. In this

method, a move is accepted depending on the sign of the

difference between �E and an `accepting threshold', which is

gradually decreased in the simulation (Berg, 1993, and refer-

ences therein). The initial value of the `accepting threshold'

has to be adjusted by trial and error.

A variant of the Metropolis criterion, based on the Tsallis

entropy, was also tried. It is supposed to allow for longer steps

to be taken in the energy landscape, as in Levy ¯ights

(Andricioaei & Straub, 1996).

Another variant is to do a normal simulated-annealing

simulation, to locate the transition temperature using the

Cv(T) curve and to reiterate the cooling procedure at a lower

rate (say half the original rate) several times, starting just

below Tc, for instance at 0.8Tc; this is called `simulated

bouncing' (Schneider et al., 1998). To locate the transition

temperature in noisy Cv(T) curves, a non-linear ®t (Press et al.,

1992) with a sum of two exponentials was performed and gave

good results.

Finally, a procedure called simulated tempering was also

tried, where the system is free to adjust its temperature by

choosing among a discret set of possible values (usually

around 20) so that each of them is sampled more or less

uniformly in the simulation. This procedure is more lengthy

since it is necessary to run the simulation at least twice. The

®rst run is used just to determine the weights for each

temperature of the ensemble, using histograms of visits; these

weights are determined recursively (Marinari & Parisi, 1992;

Hansmann & Okamoto, 1998).

Figure 3
Results of several simulated-annealing simulations at different percen-
tages of imposed phases. From left to right: 25, 20, 15, 10, 5% of imposed
phases. The horizontal axis represents the temperature cycle number
multiplied by 10, with 400 sweeps of the phases being performed at
each temperature step. Each simulation includes 210 temperature cycles.
The Sayre score is the quantity being minimized, while the percentage
of correct phases is monitored as well as the speci®c heat
Cv�T� � �hE2i ÿ hEi2�=kBT2.

Figure 2
(a) In¯uence of the number of the most intense re¯ections Nre¯ included
in the summation involved in equations (1) and (3) on the Sayre score.
For most applications in this paper, Nre¯ was set to 1000. (b) In¯uence of
the noise amplitude (in %, x axis) on the Sayre score (y axis).



In some cases, threshold accepting gave better results than

plain simulated annealing, especially in 2% of imposed phases,

but in no case was any algorithm capable of ®nding the right

solution at 0% of imposed phases. Therefore, it appears that,

in the absence of any phase restraint, the Sayre score is not

enough to distinguish the right solution from an ensemble of

other solutions with scores as low as the correct solution, but

completely wrong. This is not entirely unexpected on the basis

of a recent detailed theoretical study aimed at characterizing

the energy landscape of popular energy terms for phase

improvement and/or re®nement (Baker et al., 1993).

To further understand the energy landscape, the scores of

¯ipping one phase at a time were calculated, starting from the

native con®guration. This provides a picture of the neigh-

bourhood of the right solution in the energy landscape. While

most of the ¯ips did not vary the energy very much, it was

noticed that a couple of them have a disastrous effect on the

score; this can be seen in the histogram presented in Fig. 4(a).

Reciprocally, this means that the system can have a score quite

far away from the minimum score and be actually only one ¯ip

away from it. Therefore, the correlation between the differ-

ence in scores of two con®gurations and their Hamming

distance is far from being perfect. This is illustrated in Fig.

4(b).

3.3. Multistart Monte Carlo simulations

It was noticed, in the course of the numerous different

simulated-annealing protocols that were tried at low percen-

tages of imposed phases (i.e. below 5%), that convergence

depended a lot on the initial con®guration (which is chosen

randomly, in the limit of imposed phases). It was therefore

decided to try multistart simulations, as this is also common-

place in direct-methods strategies (e.g. Debaerdemaeker et al.,

1988; Mukherjee, 1999). In practice, a rather crude simulated-

annealing protocol was chosen, in exchange for a large

number of trial initial con®gurations. As judged both through

the envelope score and the percentage of correct phases, this

strategy proved successful, with a rate equal to 2=23 (Fig. 5a).

Since both these criteria require some a priori knowledge of

the right solution, there is a need to discriminate between right

and wrong con®gurations in the absence of any other infor-

mation. One possibility is to express in reciprocal space an

index measuring ¯uctuations in the actual electron-density

map corresponding to the phase set being tested. This

criterion has been recently expressed in reciprocal space by

T. C. Terwilliger and has been implemented here (see Theory

and methods). It readily identi®es the correct solution (Fig.

5b), in the sense that the correct solution is the one corre-

sponding to the absolute minimum of this energy function,

among all the different simulations with different starting

con®gurations.

4. Discussion

We have shown here that it is possible to resolve the phase-

ambiguity problem in the P1Å space group by applying a widely

used numerical technique in condensed-matter physics,

namely simulated annealing in the multistart mode.

The main dif®culty encountered in this work is the de®ni-

tion of an energy function for which the right solution is the

absolute minimum, with an energy spectrum such that the

`native' con®guration is well detached from all the other

(wrong) ones. Such a criterion does not exist to our knowl-

edge, meaning that it would be meaningless to re®ne one trial

con®guration against any existing energy function (see Baker

et al., 1993). The only thing that can be performed therefore is

to minimize one physically sound energy, while monitoring

another (independent) one allowing one to distinguish

whether or not the converged solution is correct. In other

words, optimization of one criterion provides `admissible'

maps, among which the right one ought to be selected out by

another criterion. The Terwilliger �2
R index proved successful
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Figure 4
Characterization of the energy landscape and phase relationships. (a)
Histogram of the number of re¯ections having a given Sayre score after
the ¯ip of just one phase, starting from the minimal conformation; there is
one re¯ection whose ¯ip brings the Sayre score from 0.0575 to 0.235. The
mean value of the new score for one (and only one) wrong phase sign is
0.0590, with a r.m.s.d. of 0.0063. Nre¯ was set to 2500. (b) Correlation
between the Sayre score and the percentage of wrong phases in randomly
generated different phase-set con®gurations, expressed as the Hamming
distance from the true solution.
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to carry out this program and the phase ambiguity was indeed

broken in our test case.

Knowledge of the shape of the molecule is a plus since it

allows for the use of an envelope score, which also readily

identi®es the right set of phases. Even though this kind of

information is not always available, there is hope that it will be

more so in the near future because signi®cant progress has

been recently accomplished in the ®eld of low-resolution

three-dimensional structure reconstruction of biological

macromolecules from experimental SAXS data in solution

(Chacon et al., 1998; Svergun, 1999; Walther et al., 2000).

However, even if the shape of the envelope is known, the

problem remains to locate it in the unit cell; this amounts to a

low-resolution molecular replacement problem, which could

be solved using standard techniques.

In space group P1Å (as in any other space group for that

matter), the set of imposed phases could come from experi-

mentally determined phases for some re¯ections (Weckert &

Hummer, 1997; Shen, 1998). Simulations along these lines,

where the phases of a small subset of re¯ections are imposed,

have already been reported for protein crystallography (Mo et

al., 1996). It is not unreasonable to foresee that these methods

will be more widely used in the near future.

Another promising avenue of research would be to impose

connectivity in the map, as originally suggested by Baker et al.

(1993). Lunin et al. (1999) recently reported some work in this

direction, albeit at low resolution only.

Finally, the method has been applied to break down phase

ambiguity in the SIR method of protein crystallography.

Preliminary tests in space group P212121 showed that the

correct phases are quickly recovered, with the centric re¯ec-

tions playing the role of re¯ections with imposed phases.

It is a pleasure to thank P. Koehl, T. Garel and H. Orland as

well as S. Doniach for helpful and stimulating discussions.

Thanks also are due to P. Dumas for careful reading of the

manuscript.
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